Exercises Superstring Theory

Priv.-Doz. Stefan Förste

Tutors: Cesar Fierro, Urmi Ninad
Hand in: 19.12.2017

1 Primary fields of the free boson CFT

We consider the 2 d CFT of a free boson given in terms of the action

$$
\begin{equation*}
S[\phi]=2 g \int d z d \bar{z} \partial_{z} \phi(z, \bar{z}) \partial_{\bar{z}} \phi(z, \bar{z}) \tag{1}
\end{equation*}
$$

One can show easily that the holomorphic energy momentum tensor $T(z)$ of the free boson CFT is given by

$$
\begin{equation*}
T(z)=-2 \pi g: \partial \phi(z) \partial \phi(z):, \tag{2}
\end{equation*}
$$

Here, $\partial \phi$ is the chiral primary field of conformal weight $(h, \bar{h})=(1,0)$ with the OPE

$$
\begin{equation*}
\mathcal{R}\left(\partial_{z} \phi(z, \bar{z}) \partial_{w} \phi(w, \bar{w})\right) \sim-\frac{1}{4 \pi g} \frac{1}{(z-w)^{2}} \tag{3}
\end{equation*}
$$

Now we want to study the spectrum of primary fields of the free boson conformal field theory.
(a) Show that the normal ordered operators $V_{\alpha}(z, \bar{z})=: e^{i \alpha \phi(z, \bar{z})}$: are primary fields and determine their conformal weights h and \bar{h}.
Hint: Determine the OPE with the energy momentum tensor $T(z)$.
(b) Consider two operators A and B linear in the creation and annihilation operators a^{\dagger} and a of the harmonic oscillators, i.e., $\left[a^{\dagger}, a\right]=1$. Show that these operators obey the relation

$$
\begin{equation*}
: e^{A}:: e^{B}:=: e^{A+B}: e^{\langle A B\rangle}, \tag{4}
\end{equation*}
$$

with $\langle A B\rangle=\langle 0| A B|0\rangle$.
Hint: Use the Baker-Campbell-Hausdorff formula.

$$
\begin{equation*}
e^{-A} B e^{A}=B+[B, A]+\frac{1}{2!}[[B, A], A]+\frac{1}{3!}[[[B, A], A], A]+\cdots \tag{5}
\end{equation*}
$$

(c) As the free bosonic field can be seen as a collection of decocupled harmonic oscillators, argue that the two-point correlation functions is given by

$$
\left\langle V_{\alpha}(z, \bar{z}) V_{\beta}(w, \bar{w})\right\rangle=\left\{\begin{array}{ll}
|z-w|^{-\frac{\alpha^{2}}{2 \pi g}} & \text { for } \alpha=-\beta \tag{6}\\
0 & \text { else }
\end{array} .\right.
$$

Hint: Derive the leading term in the $\operatorname{OPE} \mathcal{R}\left(V_{\alpha}(z, \bar{z}) V_{\beta}(w, \bar{w})\right)$, and use that $V_{0}(z, \bar{z})$ is the identity operator.

2 Operator algebra of primary fields

For a given CFT, the OPEs among all its primaries (incluiding regular terms) form the so-called operator algebra. The knowledge of the operator algebra determines all correlators of the CFT, i.e. it "solves" the CFT. Given two chiral primaries ϕ_{k}, ϕ_{ℓ}, scale invariance determines the structure of the operator algebra

$$
\begin{equation*}
\phi_{k}(z, \bar{z}) \phi_{\ell}(0,0)=\sum_{\left[\phi_{s}\right]} \sum_{\{\vec{k}\}} \sum_{\{\vec{k}\}} C_{k \ell}^{s} \beta_{k \ell}^{s\{\vec{k}\}} \beta_{k \ell}^{s\{\vec{k}\}} z^{h_{s}-h_{k}-h_{\ell}+|\vec{k}| \bar{z}^{\bar{h}_{s}}-\bar{h}_{k}-\bar{h}_{\ell}+|\vec{k}|} \phi_{s}^{\{\vec{k}\}\{\vec{k}\}}(0,0), \tag{7}
\end{equation*}
$$

where $|\vec{k}|=\sum_{n} k_{n}$ and $\vec{k}=\left(k_{1}, k_{2}, \ldots k_{m}\right), k_{1} \leq k_{2} \leq \cdots \leq k_{m}$. Similar for \vec{k}. Here $C_{k \ell}^{s}$ are the structure constants determined by the three-point correlator of three pramaries $\left\langle\phi_{s}\right| \phi_{k}(z, \bar{z})\left|\phi_{\ell}\right\rangle$.

For simplicity in the following we assume two chiral primaries $\phi_{k}(z)$ and $\phi_{\ell}(z)$, with $h=h_{k}=h_{\ell}$, then

$$
\begin{equation*}
\phi_{k}(z) \phi_{\ell}(0)=\sum_{s} C_{k \ell}^{s} z^{h_{s}-2 h} \psi_{s}(z), \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{s}(z):=\sum_{N=0}^{\infty} \sum_{\substack{\{\vec{k}\} \\|\vec{k}|=N}} z^{N} \beta_{k \ell}^{s\{\vec{k}\}} L_{-\{\vec{k}\}} \phi_{s}(0) . \tag{9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\psi_{s}(z)|0\rangle=\sum_{N=0}^{\infty} z^{N}\left|N ; h_{s}\right\rangle, \tag{10}
\end{equation*}
$$

where $\left|N ; h_{s}\right\rangle$ is the level N state descending from $\left|\phi_{s}\right\rangle=\left|h_{s}\right\rangle$.
(a) Compute and obtain the following

$$
\begin{equation*}
L_{n} \phi_{k}(z) \phi_{\ell}(0)|0\rangle=\left[z^{n+1} \partial_{z}+(n+1) h z^{n}\right] \phi_{k}(z)\left|h_{\ell}\right\rangle . \tag{11}
\end{equation*}
$$

(b) Moreover by acting $L_{n} \psi_{s}(z)|0\rangle$, derive the following relation

$$
\begin{equation*}
L_{n}\left|N+n ; h_{s}\right\rangle=\left[h_{s}+(n-1) h+N\right]\left|N ; h_{s}\right\rangle . \tag{12}
\end{equation*}
$$

For low N, we can then begin to examine what descendant states are produced:
(c) Level 1: There is one descendant state

$$
\begin{equation*}
\left|1 ; h_{s}\right\rangle=\beta_{k \ell}^{s\{1\}} L_{-1}\left|h_{s}\right\rangle . \tag{13}
\end{equation*}
$$

Using the relation given in (12), together with the Virasoro algebra, show that $\beta_{k \ell}^{s\{1\}}=\frac{1}{2}$.
(c) Level 2: There are two descendant states
(2.5 Point)

$$
\begin{equation*}
\left|2 ; h_{s}\right\rangle=\beta_{k \ell}^{s\{2\}} L_{-2}\left|h_{s}\right\rangle+\beta_{k \ell}^{s\{1,1\}} L_{-1} L_{-1}\left|h_{s}\right\rangle . \tag{14}
\end{equation*}
$$

Similarly as the previous exercise, using (12), find a pair of linearly independent equations for $\beta_{k \ell}^{s\{1,1\}}$ and $\beta_{k \ell}^{s\{2\}}$. The solution of such equations should read

$$
\begin{equation*}
\beta_{k \ell}^{s\{1,1\}}=\frac{\mathrm{c}-12 h-4 h_{s}+\mathrm{c} h_{s}+8 h_{s}^{2}}{4\left(\mathrm{c}-10 h_{s}+2 \mathrm{c} h_{s}+16 h_{s}^{2}\right)}, \quad \beta_{k \ell}^{s\{2\}}=\frac{2 h-h_{s}+4 h h_{s}+h_{s}^{2}}{\mathrm{c}-10 h_{s}+2 \mathrm{c} h_{s}+16 h_{s}^{2}} . \tag{15}
\end{equation*}
$$

Hint: You might need to evaluate the commutators $\left[L_{1}, L_{-1}^{2}\right],\left[L_{2}, L_{-1}^{2}\right],\left[L_{1}, L_{-2}\right]$, and $\left[L_{2}, L_{-2}\right]$.

